Polynomial techniques for investigation of spherical designs

نویسندگان

  • Silvia P. Boumova
  • Peter Boyvalenkov
  • Hristina Kulina
  • Maya Stoyanova
چکیده

We investigate the structure of spherical τ -designs by applying polynomial techniques for investigation of some inner products of such designs. Our approach can be used for large variety of parameters (dimension, cardinality, strength). We obtain new upper bounds for the largest inner product, lower bounds for the smallest inner product and some other bounds. Applications are shown for proving nonexistence results either in small dimensions and in certain asymptotic process. In particular, we complete the classification of the cardinalities for which 3-designs on Sn−1 exist for n = 8, 13, 14 and 18. We also obtain new asymptotic lower bound on the minimum possible odd cardinality of 3-designs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved approaches for investigation of small spherical designs

We strengthen previously applied polynomial techniques for investigation of spherical designs to obtain new bounds on inner products in some class of designs. This allows further improvements on the best known lower bounds for the minimum possible odd cardinality of designs of odd strength either in small dimensions and in certain asymptotic process.

متن کامل

Nonexistence results for spherical 7-designs

We obtain new nonexistence results for spherical 7-designs of odd cardinality. Our approach continues similar investigations for smaller strengths. We combine polynomial techniques with some geometric argument to obtain restrictions of the structure of 7-designs with fixed cardinality.

متن کامل

On the Riesz Energy of Spherical Designs

We show how polynomial techniques can be applied for obtaining upper and lower bounds on the Riesz energy of spherical designs.

متن کامل

A method for proving nonexistence of spherical designs of odd strength and odd cardinality

We combine polynomial techniques with some geometric arguments to obtain restrictions of the structure of spherical designs with fixed odd strength and odd cardinality. Our bounds for the extreme inner products of such designs allow us to prove nonexistence results in many cases. Applications are shown for 7-designs. DOI: 10.1134/S0032946009020033

متن کامل

Universal upper and lower bounds on energy of spherical designs

Linear programming (polynomial) techniques are used to obtain lower and upper bounds for the potential energy of spherical designs. This approach gives unified bounds that are valid for a large class of potential functions. Our lower bounds are optimal for absolutely monotone potentials in the sense that for the linear programming technique they cannot be improved by using polynomials of the sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2009